On the Thermodynamic Formalism for the Farey Map

ثبت نشده
چکیده

The chaotic phenomenon of intermittency is modeled by a simple map of the unit interval, the Farey map. The long term dynamical behaviour of a point under iteration of the map is translated into a spin system via symbolic dynamics. Methods from dynamical systems theory and statistical mechanics may then be used to analyse the map, respectively the zeta function and the transfer operator. Intermittency is seen to be problematic to analyze due to the presence of an ‘indifferent fixed point’. Points under iteration of the map move away from this point extremely slowly creating pathological convergence times for calculations. This difficulty is removed by going to an appropriate induced subsystem, which also leads to an induced zeta function and an induced transfer operator. Results obtained there can be transferred back to the original system. The main work is then divided into two sections. The first demonstrates a connection between the induced versions of the zeta function and the transfer operator providing useful results regarding the analyticity of the zeta function. The second section contains a detailed analysis of the pressure function for the induced system and hence the original by considering bounds on the radius of convergence of the induced zeta function. In particular, the asymptotic behaviour of the pressure function in the limit β, the inverse of ‘temperature’, tends to negative infinity is determined and the existence and nature of a phase transition at β = 1 is also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Farey Trees, Transfer Operators and Phase Transitions

We consider a family of Markov maps on the unit interval, interpolating between the tent map and the Farey map. The latter map is not uniformly expanding. Each map being composed of two fractional linear transformations, the family generalizes many particular properties which for the case of the Farey map have been successfully exploited in number theory. We analyze the dynamics through the spe...

متن کامل

A thermodynamic formalism approach to period functions for Maass forms and generalisations

In this paper we study one-parameter families of signed transfer operators P± q associated to the Farey map, as well as two-parameter families of operators for the Gauss map, obtained from the Farey map by inducing. We characterise all the analytic eigenfunctions of P± q with eigenvalue λ not embedded in the continuous spectrum, which for λ = 1 are the period functions for Maass forms studied b...

متن کامل

The Effect of Aluminum, Gallium, Indium- Doping on the Zigzag (5, 0) Boron-Nitride Nanotubes: DFT, NMR, Vibrational, Thermodynamic Parameters and Electrostatic Potential Map with Electrophilicity Studies

Influence of Aluminum, Gallium, Indium- Doping on the Boron-Nitride Nanotubes (BNNTs) investigated with density functional theory (DFT) and Hartreefock (HF) methods. For this purpose, the chemical shift of difference atomic nucleus was studied using the gauge included atomic orbital (GIAO) approch. In the following, structural parameter values, electrostatic potential, thermodynamic parameters,...

متن کامل

Variational Calculations for the Relativistic Interacting Fermion System at Finite Temperature: Application to Liquid 3He

In this paper, at first we have formulated the lowest order constrained variational method for the relativistic case of an interacting fermion system at finite temperature. Then we have used this formalism to calculate some thermodynamic properties of liquid in the relativistic regime. The results show that the difference between total energies of relativistic and non-relativistic cases of liqu...

متن کامل

The Graduate School THERMODYNAMIC FORMALISM AND MULTIFRACTAL

We investigate to what degree results in dimension theory and multifractal formalism can be derived as a direct consequence of thermodynamic properties of a dynamical system. We show that under quite general conditions, various multifractal spectra (the entropy spectrum for Birkhoff averages and the dimension spectrum for pointwise dimensions, among others) may be obtained as Legendre transform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017